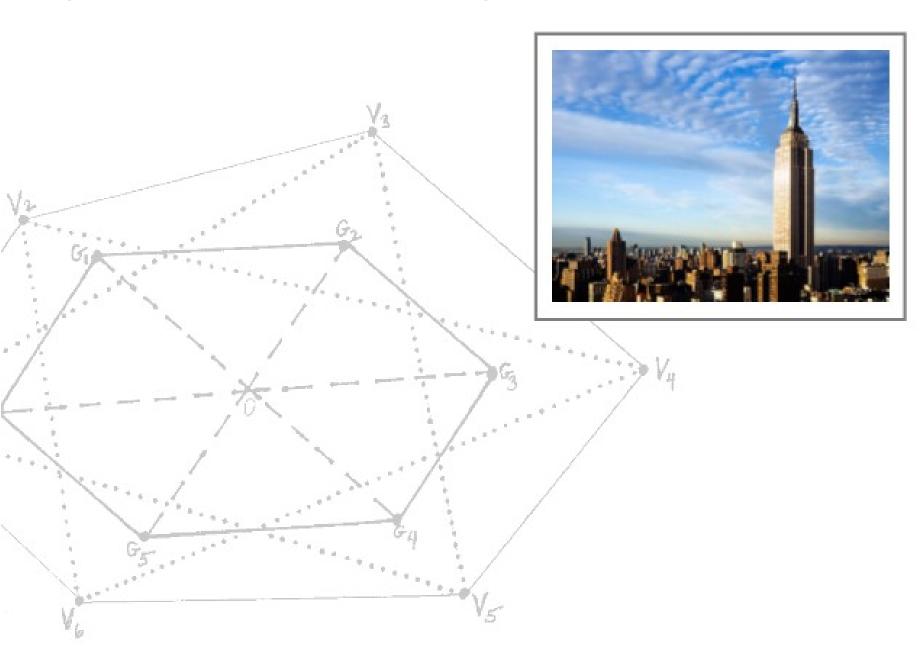
Higher Maths UNIT 1 OUTCOME 1 Straight Line



Gradient of a Straight Line

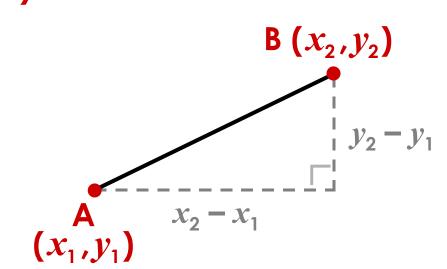
The symbol \triangle is called 'delta' and is used to describe change.

Example

$$(-2,7)$$
 $(3,9)$ $\triangle x = 3 - (-2)$
= 5

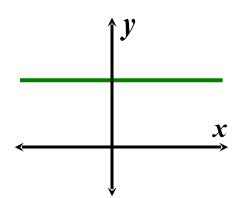
Gradient

$$m = \frac{\triangle y}{\triangle x} = \frac{y_2 - y_1}{x_2 - x_1}$$

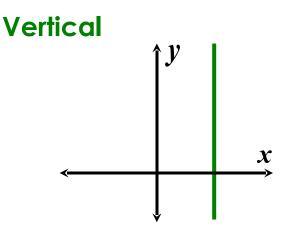


Horizontal and Vertical Lines

Horizontal



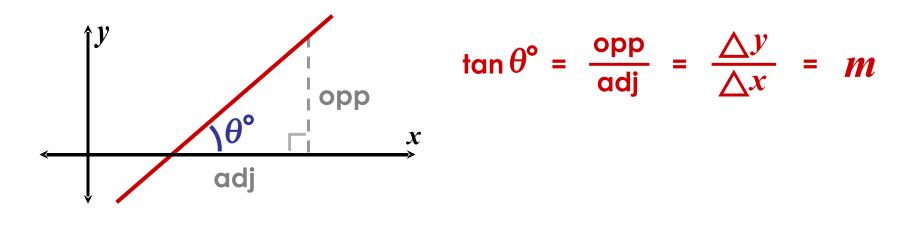
- zero gradient
- parallel to X-axis
- equations written in the form $y = \Box$



- infinite gradient ('undefined')
- parallel to *y*-axis
- equations written in the form $\chi = \Box$

Gradient and Angle

The symbol θ is called 'theta' and is often used for angles.



$$m = \tan \theta^{\circ}$$

where θ° is the angle between the line and the positive direction of the *x*-axis.

Finding the Midpoint

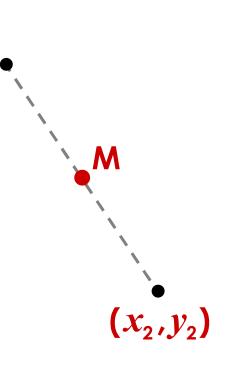
The midpoint **M** of two coordinates is the point halfway in between and can be found as follows:

- find the distance between the *x*-coordinates
- add half of this distance to the first x-coordinate
- do the same again for the y-coordinate
- write down the midpoint

An alternative method is to find the average of both coordinates:

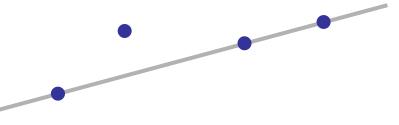
$$M = \left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right)$$

 (x_1, y_1)



Collinearity

If points lie on the same straight line they are said to be collinear.



We have shown

 $m_{PQ} = m_{QR}$

The points are

collinear.

Example

Prove that the points P(-6,-5), Q(0,-3) and R(12,1) are collinear.

$$m_{PQ} = \frac{(-3) - (-5)}{0 - (-6)} = \frac{2}{6} = \frac{1}{3}$$
$$m_{QR} = \frac{1 - (-3)}{12 - 0} = \frac{4}{12} = \frac{1}{3}$$

Gradients of Perpendicular Lines

When two lines are at 90° to each other we say they are perpendicular.

If the lines with gradients M_1 and M_2 are perpendicular,

$$m_1 = \frac{-1}{m_2}$$

Mar. m_2 $m_{AB} = \frac{-3}{5}$ $m_{PQ} =$

To find the gradient of a perpendicular line:

- flip the fraction upside down
- change from positive to negative (or negative to positive)

53

NOTE
Different Types of Straight Line Equation

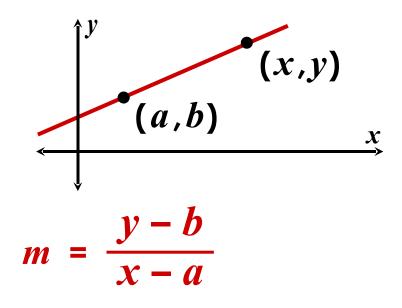
Any straight line can be described by an equation.

The equation of a straight line can be written in several different ways .

Basic Equation
(useful for sketching)
$$y = mx + c$$
(not the
y-intercept!)General Equation
(always equal to zero) $Ax + By + C = 0$ $ax + By + C = 0$

Straight lines are normally described using the General Equation, with A as a positive number.

The Alternative Straight Line Equation



$$\therefore y-b = m(x-a)$$

for the line with gradient m passing through (a,b)

Example

Find the equation of the line with gradient $\frac{1}{2}$ and passing through (5,-2).

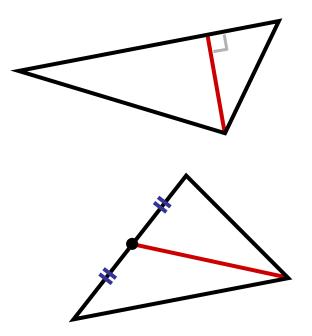
Substitute:

- $y (-2) = \frac{1}{2}(x 5)$
 - $y + 2 = \frac{1}{2}(x-5)$

$$2y + 4 = x - 5$$

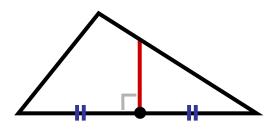
x - 2y - 9 = 0

NOTE Straight Lines in Triangles



An altitude is a perpendicular line between a vertex and the opposite side.

A median is a line between a vertex and the midpoint of the opposite side.

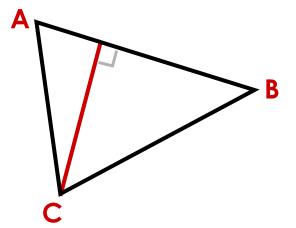


A perpendicular bisector is a perpendicular line from the midpoint of a side.

NOTE Finding the Equation of an Altitude

To find the equation of an altitude:

• Find the gradient of the side it is perpendicular to (m_{AB}).



- To find the gradient of the altitude, flip the gradient of AB and change from positive to negative:
- Substitute the gradient and the point C into

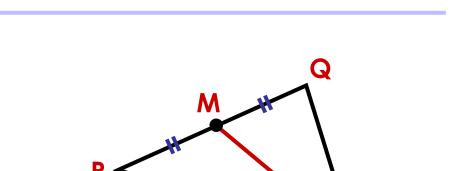
y-b = m(x-a)

Important

Write final equation in the form Ax + By + C = 0with Ax positive. Finding the Equation of a Median

To find the equation of a median:

NOTE



- Find the midpoint of the side it bisects, i.e. $M = \left(\frac{x_2 + x_1}{2}, \frac{y_2 + y_1}{2}\right)$
- Calculate the gradient of the median OM.
- Substitute the gradient and either point on the line (O or M) into

$$y-b = m(x-a)$$

Important

Write answer in the form Ax + By + C = 0with Ax positive.