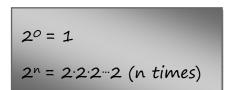
1.2 EXPONENTS

♦ THE EXPONENTIAL 2×

Let us define the power 2^{\times} , as x moves along the sets

$$N = \{0, 1, 2, 3, ...\}$$
Natural numbers $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ Integers $Q = \{\text{fractions } \frac{m}{n} \mid m, n \in Z, n \neq 0\}$ Rational numbers $R = Q + \text{irrational numbers}^1$ Real numbers

1) If $x=n \in N$, then



For example $2^3 = 8$

2) If x=-n, where $n \in N$, then

$$2^{-n}=\frac{1}{2^n}$$

Thus we know 2^{\times} for any $x \in \mathbb{Z}$.

For example
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

3) If $x=\frac{m}{n}$, where $m,n\in Z$, $n\neq O$, then

$$2^{\frac{m}{n}} = \sqrt[n]{2^m}$$

Thus we know 2^{x} for any $x \in Q$

For example, $2^{\frac{2}{3}} = \sqrt[3]{2^2} = \sqrt[3]{4}$, $2^{\frac{2}{3}} = \sqrt{2^3} = \sqrt{8}$, $2^{\frac{1}{2}} = \sqrt{2}$

 $^{^{1}}$ That is numbers that cannot be expressed as fractions, eg $\pi,\,\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$

4) If x=irrational, then

2[×] = given by a calculator!

The definition is beyond our scope, thus we trust technology!

Thus we know 2^{x} for any $x \in \mathbb{R}$. For example, $2^{\pi} = 8.8249779$

In general, if a>0 we define

$$a^{o} = 1$$

$$a^{n} = a \cdot a \cdot a \cdots a \text{ (n times)}$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^{m}} = \sqrt[n]{a^{m}}$$

$$a^{\times} = \text{given by a calculator! (for any x \in R)}$$

EXAMPLE 1

•
$$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$

• $\left(\frac{1}{5}\right)^{-2} = \frac{1}{5^{-2}} = 5^2 = 25$
• $\left(\frac{3}{5}\right)^{-2} = \left(\frac{5}{3}\right)^2 = \frac{25}{9}$
• $8^{\frac{2}{3}} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$ or $8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot (\frac{2}{3})} = 2^2 = 4$
• $27^{-\frac{4}{3}} = \sqrt[3]{27^{-4}} = \sqrt[3]{\frac{1}{27^4}} = \sqrt[3]{\left(\frac{1}{27}\right)^4} = \sqrt[3]{\left(\frac{1}{27}\right)^4} = \left(\frac{1}{3}\right)^4 = \frac{1}{81}$

NOTICE

If a<0, a× is defined	 O[×]=O only if x≠O
only for x=n∈Z	• 0° is not defined

PROPERTIES

All known properties of powers are still valid for exponents $x \in R$

(1) $a^{x}a^{y} = a^{x+y}$ (2) $\frac{a^{x}}{a^{y}} = a^{x-y}$ (3) $(ab)^{x} = a^{x}b^{x}$ (4) $\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$ (5) $(a^{x})^{y} = a^{xy}$

Here a,b>O and $x,y \in \mathbb{R}$

EXAMPLE 2

Express the following as single powers (i.e. in the form x^{y})

expression	your answer	correct answer
a ³ a ²		a ⁵
$\frac{a^6}{a^2}$		a ⁴
$\frac{x^3 x^5}{x^4}$		× 4
2 ^{x+1} 2 ^{3x}		2 ^{4x+1}
8x ³		$2^{3}x^{3} = (2x)^{3}$
$\frac{x^3y^3}{z^3}$		$\left(\frac{xy}{z}\right)^3$
$\frac{16a^2}{b^4}$		$\frac{4^2a^2}{b^4} = \left(\frac{4a}{b^2}\right)^2$
(X ³) ⁴		X ¹²

• THE NUMBER e

There is a specific irrational number

e=2.7182818...

which plays an important role in mathematics, especially in exponential modelling which we are going to study later. The number e is almost as popular as the irrational number π =3.14...

n

An approximation of e is given below. Consider the expression

	$\left(1+\frac{1}{n}\right)^{n}$	
For n=1	the result is	2
For n=2	the result is	2.25
For n=10	the result is	2.5937424
For n=100	the result is	2.7048138
For n=1000	the result is	2.7169239
For n=10 ⁶	the result is	2.7182804

As n tends to $+\infty$ this expression tends to e=2.7182818...

EXAMPLE 3

Express the following as single powers of e (i.e. in the form e^a)

expression	your answer	correct answer
$(e^2)^3 e^3$		$e^{6}e^{3}=e^{9}$
e ^{x+1} e ^{3x}		e ^{4x+1}
(e ^x) ²		e ^{2x}
$\frac{e^{x}e^{3}}{e^{4}}$		e ^{x-1}
$(\frac{1}{e})^{3x}$		e ^{-3x}

• SIMPLE EXPONENTIAL EQUATIONS

If a≠1, then

a^x=a^y ⇒ x=y

EXAMPLE 4

Solve the following equations

(a) $2^{3x-1} = 2^{x+2}$ (b) $2^{3x-1} = 4^{x+2}$ (c) $4^{3x-1} = 8^{x+2}$ (d) $\frac{1}{2^{3x-1}} = 4^{x+2}$ (e) $\sqrt{2}^{3x-1} = 4^{x+2}$

<u>Solution</u>

Attempt to induce a common base on both sides

(a) We have already a common base. Thus

 $2^{3x-1} = 2^{x+2} \quad \Leftrightarrow \quad 3x-1 = x+2 \quad \Leftrightarrow \quad 2x = 3 \quad \Leftrightarrow \quad x=3/2$

(b) We can write $4=2^2$. Thus

$$2^{3x-1} = 4^{x+2} \Leftrightarrow 2^{3x-1} = 2^{2x+4} \Leftrightarrow 3x-1 = 2x+4 \Leftrightarrow x = 5$$

(c) We can write $4=2^2$ and $8=2^3$. Thus

$$4^{3x-1} = 8^{x+2} \iff 2^{6x-2} = 2^{3x+6} \iff 6x-2 = 3x+6$$

$$\Leftrightarrow 3x=8 \iff x = 8/3$$

(d) We apply the property $\frac{1}{2^n} = 2^n$. Thus

$$\frac{1}{2^{3x-1}} = 4^{x+2} \quad \Leftrightarrow \quad 2^{-3x+1} = 2^{2x+4} \quad \Leftrightarrow \quad -3x+1 = 2x+4$$
$$\Leftrightarrow 5x = -3 \quad \Leftrightarrow \quad x = -3/5$$

(e) We apply the property $\sqrt{2} = 2^{\frac{1}{2}}$. Thus

$$\sqrt{2}^{3x-1} = 4^{x+2} \Leftrightarrow 2^{\frac{3x-1}{2}} = 2^{2x+4} \qquad \Leftrightarrow \frac{3x-1}{2} = 2x+4$$
$$\Leftrightarrow 3x-1 = 4x+8 \qquad \Leftrightarrow x = -9$$