1.2 EXPONENTS

♦ THE EXPONENTIAL 2×

Let us define the power 2^{\times} , as x moves along the sets

$$N = \{0, 1, 2, 3, ...\}$$
Natural numbers $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ Integers $Q = \{\text{fractions } \frac{m}{n} \mid m, n \in Z, n \neq 0\}$ Rational numbers $R = Q + \text{irrational numbers}^1$ Real numbers

1) If $x=n \in N$, then

For example $2^3 = 8$

2) If x=-n, where $n \in N$, then

$$2^{-n}=\frac{1}{2^n}$$

Thus we know 2^{x} for any $x \in \mathbb{Z}$.

For example
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

3) If $x=\frac{m}{n}$, where $m,n\in Z$, $n\neq O$, then

$$2^{\frac{m}{n}} = \sqrt[n]{2^m}$$

Thus we know 2^{x} for any $x \in Q$

For example, $2^{\frac{2}{3}} = \sqrt[3]{2^2} = \sqrt[3]{4}$, $2^{\frac{2}{3}} = \sqrt{2^3} = \sqrt{8}$, $2^{\frac{1}{2}} = \sqrt{2}$

 $^{^{1}}$ That is numbers that cannot be expressed as fractions, eg $\pi,\,\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$

4) If x=irrational, then

2[×] = given by a calculator!

The definition is beyond our scope, thus we trust technology!

Thus we know 2^{x} for any $x \in \mathbb{R}$. For example, $2^{\pi} = 8.8249779$

In general, if a>0 we define

$$a^{o} = 1$$

$$a^{n} = a \cdot a \cdot a \cdots a \text{ (n times)}$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^{m}} = \sqrt[n]{a^{m}}$$

$$a^{\times} = \text{given by a calculator! (for any x \in R)}$$

EXAMPLE 1

•
$$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$

• $\left(\frac{1}{5}\right)^{-2} = \frac{1}{5^{-2}} = 5^2 = 25$
• $\left(\frac{3}{5}\right)^{-2} = \left(\frac{5}{3}\right)^2 = \frac{25}{9}$
• $8^{\frac{2}{5}} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$ or $8^{\frac{2}{5}} = (2^3)^{\frac{2}{5}} = 2^{3 \cdot (\frac{2}{5})} = 2^2 = 4$
• $27^{-\frac{4}{3}} = \sqrt[3]{27^{-4}} = \sqrt[3]{\frac{1}{27^4}} = \sqrt[3]{\left(\frac{1}{27}\right)^4} = \sqrt[3]{\left(\frac{1}{27}\right)^4} = \left(\frac{1}{3}\right)^4 = \frac{1}{81}$

NOTICE

If a<0, a ^x is defined	 O[×]=O only if x≠O
only for x=n∈Z	• 0° is not defined

PROPERTIES

All known properties of powers are still valid for exponents $x \in R$

(1) $a^{x}a^{y} = a^{x+y}$ (2) $\frac{a^{x}}{a^{y}} = a^{x-y}$ (3) $(ab)^{x} = a^{x}b^{x}$ (4) $\left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$ (5) $(a^{x})^{y} = a^{xy}$

Here a,b>O and $x,y \in \mathbb{R}$

EXAMPLE 2

Express the following as single powers (i.e. in the form x^{y})

expression	your answer	correct answer
a ³ a ²		a ⁵
$\frac{a^6}{a^2}$		a ⁴
$\frac{x^3 x^5}{x^4}$		× 4
2 ^{x+1} 2 ^{3x}		2 ^{4x+1}
8x ³		$2^{3}x^{3} = (2x)^{3}$
$\frac{x^3y^3}{z^3}$		$\left(\frac{xy}{z}\right)^3$
$\frac{16a^2}{b^4}$		$\frac{4^2a^2}{b^4} = \left(\frac{4a}{b^2}\right)^2$
(X ³) ⁴		X ¹²

• THE NUMBER e

There is a specific irrational number

e=2.7182818...

which plays an important role in mathematics, especially in exponential modelling which we are going to study later. The number e is almost as popular as the irrational number π =3.14...

An approximation of e is given below. Consider the expression

	$\left(1+\frac{1}{n}\right)^{n}$	
For n=1	the result is	2
For n=2	the result is	2.25
For n=10	the result is	2.5937424
For n=100	the result is	2.7048138
For n=1000	the result is	2.7169239
For n=10 ⁶	the result is	2.7182804

As n tends to $+\infty$ this expression tends to e=2.7182818...

EXAMPLE 3

Express the following as single powers of e (i.e. in the form e^a)

expression	your answer	correct answer
$(e^2)^3 e^3$		$e^{6}e^{3} = e^{9}$
e ^{x+1} e ^{3x}		e ⁴ x+1
(e ^x) ²		e ^{2x}
$\frac{e^{x}e^{3}}{e^{4}}$		e ^{x-1}
$(\frac{1}{e})^{3x}$		e ^{-3x}

• SIMPLE EXPONENTIAL EQUATIONS

If $a \neq 1$, then

a^x=a^y ⇒ x=y

EXAMPLE 4

Solve the following equations

(a) $2^{3x-1} = 2^{x+2}$ (b) $2^{3x-1} = 4^{x+2}$ (c) $4^{3x-1} = 8^{x+2}$ (d) $\frac{1}{2^{3x-1}} = 4^{x+2}$ (e) $\sqrt{2}^{3x-1} = 4^{x+2}$

<u>Solution</u>

Attempt to induce a common base on both sides

(a) We have already a common base. Thus

 $2^{3x-1} = 2^{x+2} \quad \Leftrightarrow \quad 3x-1 = x+2 \quad \Leftrightarrow \quad 2x = 3 \quad \Leftrightarrow \quad x=3/2$

(b) We can write $4=2^2$. Thus

 $2^{3x-1} = 4^{x+2} \Leftrightarrow 2^{3x-1} = 2^{2x+4} \Leftrightarrow 3x-1 = 2x+4 \Leftrightarrow x = 5$

(c) We can write $4=2^2$ and $8=2^3$. Thus

$$4^{3x-1} = 8^{x+2} \Leftrightarrow 2^{6x-2} = 2^{3x+6} \Leftrightarrow 6x-2 = 3x+6$$

$$\Leftrightarrow 3x=8 \Leftrightarrow x = 8/3$$

(d) We apply the property $\frac{1}{2^n} = 2^n$. Thus

$$\frac{1}{2^{3x-1}} = 4^{x+2} \quad \Leftrightarrow \quad 2^{-3x+1} = 2^{2x+4} \quad \Leftrightarrow \quad -3x+1 = 2x+4$$
$$\Leftrightarrow 5x = -3 \quad \Leftrightarrow \quad x = -3/5$$

(e) We apply the property $\sqrt{2} = 2^{\frac{1}{2}}$. Thus

$$\sqrt{2}^{3x-1} = 4^{x+2} \Leftrightarrow 2^{\frac{3x-1}{2}} = 2^{2x+4} \qquad \Leftrightarrow \frac{3x-1}{2} = 2x+4$$
$$\Leftrightarrow 3x-1 = 4x+8 \qquad \Leftrightarrow x = -9$$

1.3 SEQUENCES IN GENERAL - SERIES

♦ SEQUENCE

A <u>sequence</u> is just an ordered list of numbers (**terms** in a definite order). For example

Usually, the terms of a sequence follow a specific pattern, for example

0,2,4,6,8,10,	(even numbers)
1,3,5,7,9,11,	(odd numbers)
5,10,15,20,25,	(positive multiples of 5)
, 32, 16, 32, 4, 8	(powers of 2)

We use the notation u_n to describe the n-th term. Thus, the terms of the sequence are denoted by

$$U_1, U_2, U_3, U_4, U_5, ...$$

♦ SERIES

A series is just a sum of terms:

```
S_{n} = u_{1} + u_{2} + u_{3} + \dots + u_{n} \qquad (the sum of the first n terms)S_{\infty} = u_{1} + u_{2} + u_{3} + \dots \qquad (the sum of all terms, \infty terms)
```

We say that S_{∞} is an infinite series, while the finite sums S_{1} , S_{2} , S_{3} ,... are called **partial sums**.

Consider the sequence

1,3,5,7,9,11,... (odd numbers)

Some of the terms are the following

$$u_1 = 1, u_2 = 3, u_3 = 5, u_6 = 11, u_{10} = 19$$

Also,

Finally,

 $S_{\infty} = 1 + 3 + 5 + 7 + \cdots$ (in this case the result is $+\infty$)

• SIGMA NOTATION
$$(\sum_{n=1}^{k})$$

Instead of writing

$$u_1 + u_2 + u_3 + u_4 + u_5 + u_6 + u_7 + u_8 + u_9$$

we may write

$$\sum_{n=1}^{q} u_n$$

It stands for the sum of all terms u_n , where n ranges from 1 to 9. In general,

expresses the sum of all terms u_n , where n ranges from 1 to k.

We may also start with another value for n, instead of 1, e.g. $\sum_{n=4}^{q} u_n$

- $\sum_{n=1}^{3} 2^{n} = 2^{1} + 2^{2} + 2^{3} = 2 + 4 + 8 = 14$
- $\sum_{n=1}^{4} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{12 + 6 + 4 + 3}{12} = \frac{25}{12}$
- $\sum_{k=1}^{3} \frac{1}{2^{k}} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{4+2+1}{8} = \frac{7}{8}$

•
$$\sum_{n=3}^{6} (2n+1) = 7+9+11+13 = 22$$

• $\sum_{x=3}^{20} \frac{x}{x+2} = \frac{3}{5} + \frac{4}{6} + \frac{5}{7} + \dots + \frac{20}{22} = \dots$ whatever that is, I don't mind!!!

We can also express an infinite sum as follows

• $\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$ (it never finishes!)

The result is 1. (I know it looks strange, but believe me, it is right!)

♦ NOTICE

There are two basic ways to describe a sequence

A) by a GENERAL FORMULA

We just describe the general term u_n in terms of n.

For example, $u_n = 2n$ (It gives $u_1 = 2$, $u_2 = 4$, $u_3 = 6$, ...) It is the sequence 2,4,6,8,10,...

EXAMPLE 3

$u_n = n^2$	is the sequence	1²,	2 ²	, 3 ²	, 4 ² ,	, 5 ² ,
	that is	1,	4,	9,	16,	25,
$u_n = 2^n$	is the sequence	2,	4,	8,	16,	32,

B) by a RECURSIVE RELATION (mainly for Math HL)

Given: u_1 , the first term

 u_{n+1} in terms of u_n

For example,

 $u_1 = 10$ $u_{n+1} = u_n + 2$

This says that the first term is 10 and then

$$u_{2} = u_{1} + 2$$

 $u_{3} = u_{2} + 2$
 $u_{4} = u_{3} + 2$ and so on.

In simple words, begin with 10 and keep adding 2 in order to find the following term.

It is the sequence 10, 12, 14, 16, 18, ...

EXAMPLE 4

 $u_1 = 3$ $u_{n+1} = 2u_n + 5$

It is the sequence 3, 11, 27, 59, ...

EXAMPLE 5

Sometimes, we are given the first two terms u_1, u_2 and then a recursive formula for u_{n+1} in terms of u_n and u_{n-1} .

The most famous sequence of this form is the Fibonacci sequence

```
u_1 = 1, u_2 = 1
```

$$u_{n+1} = u_n + u_{n-1}$$

In other words,

we add u_1, u_2 in order to obtain u_3 ,

we add u_2, u_3 in order to obtain u_4 , and so on.

It is the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

1.4 ARITHMETIC SEQUENCE (A.S.)

♦ THE DEFINITION

Let's start with an example! I give you the first term of a sequence, say $u_1=5$, and I always ask you to add a fixed value, say d=3, in order to find the next term. The following sequence is generated

5, 8, 11, 14, 17, ...

Such a sequence is called **arithmetic**. That is, in an arithmetic sequence the difference between any two consecutive terms is constant.

We only need

The first term	u ₁
The common difference	d

EXAMPLE 1

If u ₁ =1, d=2	the sequence is	1, 3, 5, 7, 9,
If u1=2, d=2	the sequence is	2, 4, 8, 10, 12,
If u1=-10, d=5	the sequence is	-10, -5, 0, 5, 10,
If u₁=10, d=-3	the sequence is	10, 7, 4, 1, -2,

Notice that the common difference d may also be negative!

• QUESTION A: What is the general formula for u_n ?

If we know u_1 and d, then

$$u_n = u_1 + (n-1)d$$

Indeed, let us think:

In order to find $u_{\scriptscriptstyle 5}$, we start from $u_{\scriptscriptstyle 1}$ and then add 4 times the difference d

$$u_1, u_2, u_3, u_4, u_5$$

 $d d d d d$

Hence, $u_5 = u_1 + 4d$

Similarly,
$$u_{10} = u_1 + 9d$$

 $u_{50} = u_1 + 49d$

In general, $u_n = u_1 + (n-1)d$

EXAMPLE 2

In an arithmetic sequence let $u_1 = 3$ and d = 5. Find

(a) the first four terms (b) the 100th term

<u>Solution</u>

(a) 3, 8, 13, 18

(b) Now we need the general formula

 $u_{100} = u_1 + 99d = 3 + 99 \cdot 5 = 498$

EXAMPLE 3

In an arithmetic sequence let $u_1 = 100$ and $u_{16} = 145$. Find u_7

<u>Solution</u>

We know u_1 , we need d. We exploit the information for u_{16} first.

u₁₆ = u₁ + 15d 145 = 100 + 15d 45 = 15d d=3

Therefore, $u_7 = u_1 + 6d = 100 + 6 \cdot 3 = 118$

<u>**REMEMBER</u>**: Usually, our first task in an A.S. is to find the basic elements, u_1 and d, and then everything else!</u>

EXAMPLE 4

In an arithmetic sequence let $u_{10} = 42$ and $u_{1q} = 87$. Find u_{100}

<u>Solution</u>

The formula for u_{10} and u_{19} takes the form

$$u_{10} = u_{1} + 9d \qquad \text{thus} \qquad u_{1} + 9d = 42 \quad (a)$$

$$u_{19} = u_{1} + 18d \qquad u_{1} + 18d = 87 \quad (b)$$
Subtract (b)-(a): $18d - 9d = 87 - 42$
 $9d = 45$
 $d = 5$
Then, (a) gives $u_{1} = 42 - 9d$
 $= 42 - 9 \cdot 5$
 $= -3$

Since we know $u_1 = -3$ and d = 5 we are able to find any term we like! Thus,

• **QUESTION B**: What is the sum S_n of the first n terms?

It is directly given by

$$S_n = \frac{n}{2}(u_1 + u_n) \qquad (1)$$

or otherwise by

$$S_n = \frac{n}{2} [2u_1 + (n-1)d]$$
 (2)

<u>NOTICE</u>: Use (1) if you know u_1 and the last term u_n Use (2) if you know u_1 and d (the basic elements)

For the A.S. $3, 5, 7, 9, 11, \dots$ find S_3 and S_{101}

<u>Solution</u>

We have $u_1 = 3$ and d=2. For S_3 the result is direct: $S_3 = 3+5+7 = 15$

[check though that formulas (1), (2) give the same result for S_3]

For S_{101} we use formula (2)

$$S_{101} = \frac{101}{2} [2u_1 + 100d] = \frac{101}{2} 206 = 10403$$

EXAMPLE 6

Find 10 + 20 + 30 + ... + 200

<u>Solution</u>

We have an arithmetic sequence with $u_1 = 10$ and d = 10. The number of terms is clearly 20 and $u_{20} = 200$

$$S_{20} = \frac{20}{2}(u_1 + u_{20}) = 10 (10 + 200) = 2100$$

EXAMPLE 7

Show that

$$1+2+3+...+n=\frac{n(n+1)}{2}$$

<u>Solution</u>

This is the simplest arithmetic series with $u_1 = 1$ and d = 1. We ask for S_n

$$S_n = \frac{n}{2}(u_1 + u_n) = \frac{n}{2}(1 + n) = \frac{n(n+1)}{2}$$

For example,

$$1+2+3+\ldots+100=\frac{100\cdot101}{2}=5050$$

The 3^{rd} term of an A.S. is zero while the sum of the first 15 terms is -300. Find the first term and the sum of the first ten terms.

<u>Solution</u>

Well, too much information!!! Let us organize our data:

GIVEN: $u_3 = 0$ $S_{15} = -300$ ASK FOR: u_1 S_{10}

The formulas for u_3 and S_{15} give

$$u_{3} = u_{1} + 2d \qquad \Leftrightarrow \quad 0 = u_{1} + 2d$$
$$S_{15} = \frac{15}{2}(2u_{1} + 14d) \quad \Leftrightarrow -300 = 15u_{1} + 105d$$

We solve the system

$$u_1 + 2d = 0$$

 $15u_1 + 105d = -300$

And obtain $u_1 = 8$ and d = -4.

Finally,

$$S_{10} = \frac{10}{2}(2u_1 + 9d) = 5(16 - 36) = -100$$

NOTICE FOR CONSECUTIVE TERMS

Let

a, x, b

be consecutive terms of an arithmetic sequence (we don't mind if these are the first three terms or some other three consecutive terms). The common difference is equal to

$$x - a = b - x$$

Hence, 2x=a+b, that is $x = \frac{a+b}{2}$ (x is the mean of a and b)

Let x+1, 3x, 6x-5 be consecutive terms of an A.S. Find x.

<u>Solution</u>

It holds

(3x)-(x+1) = (6x-5)-(3x) $\Rightarrow 2x-1 = 3x-5$ $\Rightarrow x = 4$

(Indeed, the three terns are 5, 12, 19)

EXAMPLE 10

Let a, 10, b, a+b be consecutive terms of an A.S. Find a and b

<u>Solution</u>

Clearly	10-	a = 1	b-10 = (a+b)-b	
that is	10-	a = 1	b-10 = a		
Hence,					
10-a	= a	\Leftrightarrow	2a = 10	\Leftrightarrow	a = 5
b-10	= a	\Leftrightarrow	b-10 = 5	\Leftrightarrow	b = 15

EXAMPLE 11

Let 100, a, b, c, 200 be consecutive terms of an A.S. Find the values of a, b and c.

<u>Solution</u>

Notice that 100, b, 200 are also in arithmetic sequence. Thus b is the mean of 100 and 200, that is b=150 Now a is the mean of 100 and 150, that is a = 125 c is the mean of 150 and 200, that is c = 175