1.2 EXPONENTS

♦ THE EXPONENTIAL 2^x

Let us define the power 2×, as x moves along the sets

$$
N = \{O,1,2,3,...\}
$$

\n
$$
Z = \{..., -3, -2, -1, O, 1, 2, 3,...\}
$$

\n
$$
Q = \{\text{fractions } \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq O\}
$$

\n
$$
R = Q + irrational numbers
$$

\n
$$
R = Q + irrational numbers
$$

\n
$$
R = Q + irrational numbers
$$

1) If $x=n\in N$, then

For example $2^3=8$

2) If $x=-n$, where $n \in N$, then

$$
2^{-n} = \frac{1}{2^n}
$$

Thus we know 2^x for any $x \in Z$.

For example
$$
2^{-3} = \frac{1}{2^{3}} = \frac{1}{8}
$$

3) If x= n $\frac{m}{m}$, where m,n∈Z, n≠O, then

$$
2^{\frac{m}{n}} = \sqrt[n]{2^m}
$$

Thus we know 2^x for any $x \in Q$

For example, 2 3 2 $2^{\overline{5}}$ = $\sqrt[3]{2^2}$ = $\sqrt[3]{4}$, $2^{\overline{5}}$ 2 $2^{\overline{3}} = \sqrt{2^3} = \sqrt{8}$, $2^{\overline{2}}$ 1 $2^2 = \sqrt{2}$

¹ That is numbers that cannot be expressed as fractions, eg π, $\sqrt{2}$, $\sqrt{5}$, $\sqrt{5}$

4) If x=irrational, then

 2^{x} = given by a calculator!

The definition is beyond our scope, thus we trust technology!

Thus we know 2^x for any $x \in R$. For example, 2^{π} = 8.8249779

In general, if a>0 we define

$$
a^{o} = 1
$$
\n
$$
a^{n} = a \cdot a \cdot a \cdot a \quad (n \text{ times})
$$
\n
$$
a^{-n} = \frac{1}{a^{n}}
$$
\n
$$
a^{\frac{m}{n}} = \sqrt[n]{a^{m}} = \sqrt[n]{a^{m}}
$$
\n
$$
a^{x} = given by a calculator! (for any x \in R)
$$

EXAMPLE 1

•
$$
5^{-2} = \frac{1}{5^2} = \frac{1}{25}
$$

\n• $(\frac{1}{5})^{-2} = \frac{1}{5^{-2}} = 5^2 = 25$
\n• $(\frac{3}{5})^{-2} = (\frac{5}{3})^2 = \frac{25}{9}$
\n• $8^{\frac{2}{3}} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$ or $8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^3 \cdot 2^2 = 4$
\n• $27^{-4/3} = \sqrt[3]{27^{-4}} = \sqrt[3]{\frac{1}{27^4}} = \sqrt[3]{(\frac{1}{27})^4} = \sqrt[3]{(\frac{1}{27})^4} = (\frac{1}{3})^4 = \frac{1}{81}$

NOTICE

♦ PROPERTIES

All known properties of powers are still valid for exponents x∈R

(1)
$$
a^x a^y = a^{x+y}
$$

\n(2) $\frac{a^x}{a^y} = a^{x-y}$
\n(3) $(ab)^x = a^x b^x$
\n(4) $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$
\n(5) $(a^x)^y = a^{xy}$

Here a,b>0 and x,y∈R

EXAMPLE 2

Express the following as single powers (i.e. in the form x^y)

♦ THE NUMBER e

There is a specific irrational number

e=2.7182818…

which plays an important role in mathematics, especially in exponential modelling which we are going to study later. The number e is almost as popular as the irrational number π =3.14...

An approximation of e is given below. Consider the expression

As n tends to +∞ this expression tends to e=2.7182818…

EXAMPLE 3

Express the following as single powers of e (i.e. in the form e^a)

♦ SIMPLE EXPONENTIAL EQUATIONS

If $a \neq 1$, then

$a^x = a^y \Rightarrow x = y$

EXAMPLE 4

Solve the following equations

(a) $2^{3x-1} = 2^{x+2}$ **(b)** $2^{3x-1} = 4^{x+2}$ **(c)** $4^{3x-1} = 8^{x+2}$ **(d)** $\frac{1}{2^{3x-1}} = 4^{x+2}$ **(e)** $\sqrt{2}^{3x-1} = 4^{x+2}$

Solution

Attempt to induce a common base on both sides

(a) We have already a common base. Thus

$$
2^{3x-1} = 2^{x+2} \Leftrightarrow 3x-1 = x+2 \Leftrightarrow 2x = 3 \Leftrightarrow x=3/2
$$

(b) We can write 4=2². Thus

$$
2^{3x-1} = 4^{x+2} \Leftrightarrow 2^{3x-1} = 2^{2x+4} \Leftrightarrow 3x-1 = 2x+4 \Leftrightarrow x = 5
$$

(c) We can write $4=2^2$ and $8=2^3$. Thus

$$
4^{3x-1} = 8^{x+2} \Leftrightarrow 2^{6x-2} = 2^{3x+6} \Leftrightarrow 6x-2 = 3x+6
$$

\n
$$
\Leftrightarrow 3x=8 \Leftrightarrow x = 8/3
$$

\n(d) We apply the property $\frac{1}{2^n} = 2^n$. Thus
\n
$$
\frac{1}{2^{3x-1}} = 4^{x+2} \Leftrightarrow 2^{-3x+1} = 2^{2x+4} \Leftrightarrow -3x+1 = 2x+4
$$

\n
$$
\Leftrightarrow 5x = -3 \Leftrightarrow x = -3/5
$$

(e) We apply the property $\sqrt{2}$ = 2 $^{\frac{1}{2}}$. Thus

$$
\sqrt{2}^{3x-1} = 4^{x+2} \Leftrightarrow 2^{\frac{3x-1}{2}} = 2^{2x+4} \qquad \Leftrightarrow \frac{3x-1}{2} = 2x+4
$$

$$
\Leftrightarrow 3x-1 = 4x+8 \qquad \Leftrightarrow x=-9
$$

1.3 SEQUENCES IN GENERAL – SERIES

♦ SEQUENCE

A **sequence** is just an ordered list of numbers (**terms** in a definite order). For example

Usually, the terms of a sequence follow a specific pattern, for example

We use the notation u_n to describe the n-th term. Thus, the terms of the sequence are denoted by

$$
u_1, u_2, u_3, u_4, u_5, ...
$$

♦ SERIES

A **series** is just a sum of terms:

```
S_n = u_1 + u_2 + u_3 + \cdots + u_n (the sum of the first n terms) 
S_{\infty} = u_1 + u_2 + u_3 + \cdots (the sum of all terms, \infty terms)
```
We say that S_{∞} is an infinite series, while the finite sums S_1 , S_2 , S_3 ,... are called **partial sums**.

Consider the sequence

1,3,5,7,9,11,… (odd numbers)

Some of the terms are the following

 $u_1 = 1$, $u_2 = 3$, $u_3 = 5$, $u_6 = 11$, $u_{10} = 19$

Also,

$$
S_1 = 1,
$$

\n
$$
S_2 = 1 + 3 = 4,
$$

\n
$$
S_3 = 1 + 3 + 5 = 9,
$$

\n
$$
S_4 = 1 + 3 + 5 + 7 = 16
$$

Finally,

 S_{∞} =1+3+5+7+ \cdots (in this case the result is + ∞)

• SIGMA NOTATION
$$
(\sum_{n=1}^{k}
$$
)

Instead of writing

$$
u_1 + u_2 + u_3 + u_4 + u_5 + u_6 + u_7 + u_8 + u_9
$$

we may write

$$
\sum_{n=1}^q u_n
$$

It stands for the sum of all terms u_n , where n ranges from 1 to 9. In general,

expresses the sum of all terms u_n , where n ranges from 1 to k.

We may also start with another value for n, instead of 1, e.g. $\sum\limits_{n=4}^{\infty}$ 9 n=4 u_{n}

- $\sum_{n=1}^{\infty}$ 3 n=1 2^{n} = 2^{n} + 2^{2} + 2^{3} = 2+4+8 = 14
- $\sum_{n=1}^{1}$ 4 $m=1$ n $\frac{1}{1}$ = 1 2 $+\frac{1}{1}$ 3 $+\frac{1}{1}$ 4 $+\frac{1}{1}$ 12 $=\frac{12+6+4+3}{2}$ 12 $=\frac{25}{1}$
- $\sum_{k=1}^{\infty}$ 3 $k = 1$ 2^{k} $\frac{1}{2^k}$ = 2 1 4 $+\frac{1}{1}$ 8 $+\frac{1}{1}$ 8 $=\frac{4+2+1}{2}$ 8 $=$ $\frac{7}{1}$

•
$$
\sum_{n=3}^{6} (2n+1) = 7+9+11+13 = 22
$$

• $\sum_{x=3}^{\infty} \frac{x}{x+1}$ <u>20</u> $\sum_{x=3}$ $x + 2$ $\frac{x}{2}$ = 22 20 7 5 6 4 5 $\frac{3}{5} + \frac{4}{5} + \frac{5}{7} + \cdots + \frac{20}{32} = ...$ whatever that is, I don't mind!!!

We can also express an infinite sum as follows

• ∑ ∞ $\sum_{n=1}^{\infty} 2^n$ $\frac{1}{2}$ = 2 1 4 $+\frac{1}{1}$ 8 $+\frac{1}{1}$ 16 $+\frac{1}{46}+\cdots$ (it never finishes!)

The result is 1. (I know it looks strange, but believe me, it is right!)

♦ NOTICE

There are two basic ways to describe a sequence

A) by a GENERAL FORMULA

We just describe the general term u_{n} in terms of n.

For example, $u_n = 2n$ (It gives $u_1 = 2$, $u_2 = 4$, $u_3 = 6$, ...) It is the sequence $2,4,6,8,10,...$

EXAMPLE 3

B) by a RECURSIVE RELATION (mainly for Math HL)

 u_{n+1} in terms of u_n

For example,

 $u_1 = 10$ $u_{n+1} = u_n + 2$

This says that the first term is 10 and then

$$
u_2 = u_1 + 2
$$

\n $u_3 = u_2 + 2$
\n $u_4 = u_3 + 2$ and so on.

In simple words, begin with 10 and keep adding 2 in order to find the following term.

It is the sequence 10, 12, 14, 16, 18, …

EXAMPLE 4

 $u_1 = 3$ $u_{n+1} = 2u_n + 5$

It is the sequence 3, 11, 27, 59, …

EXAMPLE 5

Sometimes, we are given the first two terms $u_{\scriptscriptstyle\perp}, u_{\scriptscriptstyle\perp}$ and then a recursive formula for u_{n+1} in terms of u_n and u_{n-1} .

The most famous sequence of this form is the **Fibonacci sequence**

```
u_1 = 1, u_2 = 1
```

```
u_{n+1} = u_n + u_{n-1}
```
In other words,

we add u_1 , u_2 in order to obtain u_3 ,

we add u_2 , u_3 in order to obtain u_4 , and so on.

It is the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

1.4 ARITHMETIC SEQUENCE (A.S.)

♦ THE DEFINITION

Let's start with an example! I give you the first term of a sequence, say $u_1 = 5$, and I always ask you to add a fixed value, say d=3, in order to find the next term. The following sequence is generated

5, 8, 11, 14, 17, …

Such a sequence is called **arithmetic**. That is, in an arithmetic sequence the difference between any two consecutive terms is constant.

We only need

The **first term** u₁ The **common difference** d

EXAMPLE 1

Notice that the common difference d may also be negative!

• QUESTION A: What is the general formula for u_n?

If we know $u_{\scriptscriptstyle \perp}$ and d, then

$$
u_n = u_1 + (n-1)d
$$

Indeed, let us think:

In order to find u_s , we start from u_1 and then add 4 times the difference d

 u¹ , u² , u³ , u⁴ , u⁵ d d d d

Hence, $u_s = u₁ + 4d$

Similarly,
$$
u_{10} = u_1 + 9d
$$

 $u_{50} = u_1 + 49d$

In general, $u_n = u_1 + (n-1)d$

EXAMPLE 2

In an arithmetic sequence let $u_1 = 3$ and d=5. Find

(a) the first four terms (b) the 100 th term

Solution

(a) 3, 8, 13, 18

(b) Now we need the general formula

 $u_{100} = u_1 + 99d = 3 + 99.5 = 498$

EXAMPLE 3

In an arithmetic sequence let $u_1 = 100$ and $u_{16} = 145$. Find u_7

Solution

We know $u_{\scriptscriptstyle \perp}$, we need d. We exploit the information for $u_{\scriptscriptstyle 16}$ first.

 $u_{16} = u_1 + 15d$ 145 = 100 + 15d 45 = 15d $d=3$

Therefore, $u_7 = u_1 + 6d = 100 + 6.3 = 118$

REMEMBER: Usually, our first task in an A.S. is to find the basic elements, $u_\text{\tiny 1}$ and d, and then everything else!

EXAMPLE 4

In an arithmetic sequence let u_{10} =42 and u_{19} =87. Find u_{100}

Solution

The formula for u_{10} and u_{19} takes the form

$$
u_{10} = u_1 + 9d \t\t\t thus \t\t u_1 + 9d = 42 \t\t (a)
$$
\n
$$
u_{14} = u_1 + 18d \t\t\t u_1 + 18d = 87 \t\t (b)
$$
\nSubtract (b) - (a): \t\t 18d - 9d = 87 - 42
\n9d = 45
\nd = 5
\nThen, (a) gives \t\t $u_1 = 42 - 9d$
\n= 42 - 9.5
\n= -3

Since we know $u_1 = -3$ and $d = 5$ we are able to find any term we like! Thus,

$$
u_{100} = u_1 + 99d = -3 + 99 \cdot 5 = 492
$$

 \bullet QUESTION B: What is the sum S_n of the first n terms?

It is directly given by

$$
S_n = \frac{n}{2}(u_1 + u_n) \qquad (1)
$$

or otherwise by

$$
S_n = \frac{n}{2} [2u_1 + (n-1)d] \qquad (2)
$$

 $\overline{\mathsf{NOTE}}$: Use (1) if you know $u_\text{\tiny 1}$ and the last term $u_\text{\tiny n}$ Use (2) if you know u_1 and d (the basic elements)

For the A.S. $\,$ 3, 5, 7, 9, 11, \dots find $S_{\scriptscriptstyle 3}$ and $S_{\scriptscriptstyle 101}$

Solution

We have u_1 =3 and d=2. For S_3 the result is direct: $S_z = 3+5+7 = 15$

[check though that formulas (1), (2) give the same result for S_{3}]

For S_{101} we use formula (2)

$$
S_{101} = \frac{101}{2} [2u_1 + 100d] = \frac{101}{2} 206 = 10403
$$

EXAMPLE 6

Find 10 + 20 + 30 + … + 200

Solution

We have an arithmetic sequence with $u_1 = 10$ and $d = 10$. The number of terms is clearly 20 and $u_{20} = 200$

$$
S_{20} = \frac{20}{2}(u_1 + u_{20}) = 10 (10+200) = 2100
$$

EXAMPLE 7

Show that

$$
1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}
$$

Solution

This is the simplest arithmetic series with $u_1 = 1$ and $d=1$. We ask for S_n

$$
S_n = \frac{n}{2}(u_1 + u_n) = \frac{n}{2}(1 + n) = \frac{n(n+1)}{2}
$$

For example,

$$
1+2+3+ ... + 100 = \frac{100 \cdot 101}{2} = 5050
$$

The 3rd term of an A.S. is zero while the sum of the first 15 terms is -300. Find the first term and the sum of the first ten terms.

Solution

Well, too much information!!! Let us organize our data:

GIVEN:
$$
u_3 = 0
$$
 $S_{15} = -300$
ASK FOR: u_1 S_{10}

The formulas for $u_{\overline{3}}$ and $\overline{S}_{\overline{15}}$ give

$$
u_3 = u_1 + 2d \qquad \Leftrightarrow \qquad O = u_1 + 2d
$$

$$
S_{15} = \frac{15}{2} (2u_1 + 14d) \qquad \Leftrightarrow -300 = 15u_1 + 105d
$$

We solve the system

$$
u_1 + 2d = 0
$$

$$
15u_1 + 105d = -300
$$

And obtain $u_1 = 8$ and $d = -4$.

Finally,

$$
S_{10} = \frac{10}{2}(2u_1 + 9d) = 5(16 - 36) = -100
$$

♦ NOTICE FOR CONSECUTIVE TERMS

Let

a, x, b

be consecutive terms of an arithmetic sequence (we don't mind if these are the first three terms or some other three consecutive terms). The common difference is equal to

$$
x-a=b-x
$$

Hence, $2x=a+b$, that is $x =$ 2 $\frac{a+b}{2}$ (x is the mean of a and b)

Let $x+1$, 3x, 6 $x-5$ be consecutive terms of an A.S. Find x .

Solution

It holds $(3x)-(x+1) = (6x-5)-(3x)$ ⇔ 2x-1 = 3x-5 \Leftrightarrow $x = 4$

(Indeed, the three terns are 5, 12, 19)

EXAMPLE 10

Let a, 10, b, a+b be consecutive terms of an A.S. Find a and b

Solution

EXAMPLE 11

Let 100, a, b, c, 200 be consecutive terms of an A.S. Find the values of a, b and c.

Solution

Notice that 100, b, 200 are also in arithmetic sequence. Thus b is the mean of 100 and 200, that is b=150 Now a is the mean of 100 and 150, that is $a = 125$ c is the mean of 150 and 200 , that is $c = 175$