2.9 LOGARITHMS - THE LOGARITHMIC FUNCTION y=logax

♦ THE LOGARITHM log₂x

This number is called **logarithm of x to the base 2**. It is connected to the exponential 2^{x} . The definition is given by

 $log_2 x = y \Leftrightarrow 2^y = x$

For example,

 $log_2 8 = 3$, since $2^3 = 8$ $log_2 16 = 4$, since $2^4 = 16$ $log_2 1024 = 10$, since $2^{10} = 1024$ etc.

For example, for $log_2 8=?$, we think in the following way:

2^{what exponent} gives 8?

The answer is 3

Hence log₂8=3

Working in the same way let us find log₂64=?

It is log_64=6

However, for log₂10=?, we should think in the following way: 2^{what exponent} gives 10? OK, this is difficult to answer!!! Our calculator gives log₂10=3.321928... This implies that 2^{3.321928...}=10

EXAMPLE 1

Find $\log_2 32$, $\log_2 2^5$, $\log_2 2^{100}$, $\log_2 2^{1453}$, $\log_2 2$, $\log_2 1$

- log₂32=5
 log₂2⁵=5
 log₂2¹⁰⁰=100 Notice, in general log₂2^x=x
 log₂2¹⁴⁵³=1453
 log₂2=1
- log₂1=0
- ♦ THE LOGARITHM log_ax

In exactly the same way, for any base a>O, a≠1 we define

$$log_a x = y \Leftrightarrow a^y = x$$

For example, $\log_3 9 = 2$ (since $3^2 = 9$)

NOTICE

Once upon a time log10x has been the most popular logarithm!!!

$$log_{10}1000 = 3$$
, $log_{10}10000 = 4$, $log_{10}1000000 = 6$,
 $log_{10}0.001 = -3$, $log_{10}0.00001 = -6$,

In some way, the logarithm to the base 10 indicates the size of the number! Due to its popularity the base 10 for this particular logarithm is usually ignored

We write **logx** instead of **log**₁₀**x** Hence log100=2 log0.01=-2 ◆ THE LOGARITHMIC FUNCTION y=log_ax

A new function is defined

$$y = log_a x$$

In fact, this is the inverse function of the exponential function $y=a^{x}$

If $f(x)=a^x$ then $f^{-1}(x)=\log_a x$

Indeed, $a^{x}=y \Leftrightarrow x=\log_{a}y$, hence $f^{-1}(x)=\log_{a}x$

If a>1 (for example if a=2), the graphs of these two functions look like

Observations:

• For $y=a^{x}$: **Domain**: $x \in \mathbb{R}$

Range: y∈R+ (i.e. y>O)

- For $y=log_a x$: **Domain**: $x \in R_+$ (*i.e.* x > O) **Range**: $y \in R$
- The x-axis is a horizontal asymptote of $y=a^x$
- The y-axis is a vertical asymptote of y=log_ax
- $y=a^{x}$ always passes through (0,1)
- $y = \log_a x$ always passes through (1,0)

♦ BASIC PROPERTIES OF LOGARITHMS

For any base a (a>O, a \neq 1)

• $log_a 1 = 0$ • $log_a a = 1$ • $log_a a^x = x$ • $a^{log_a x} = x$

The first three results can be directly confirmed by the definition of logarithm. For the last one, set $y = \log_a x$. The definition implies $a^y = x$. Replace back $y = \log_a x$ and the result is immediate!

• FOUR ALGEBRAIC LAWS

For simplicity reasons, we use log instead of log_{a} .

1) $\log xy = \log x + \log y$ 2) $\log \frac{x}{y} = \log x - \log y$ 3) $\log x^n = n\log x$ 4) $\log \frac{1}{x} = -\log x$ • $\log x + \log y = \log x y$ • $\log x - \log y = \log \frac{x}{y}$ • $n\log x = \log x^n$ • $-\log x = \log \frac{1}{x}$

Proofs (consider all logarithms to be of base a) For all of them we follow the same method! We check if $a^{LHS} = a^{RHS}$ 1) $a^{LHS} = xy$ and $a^{RHS} = a^{\log_{a}x + \log_{a}y} = a^{\log_{a}x}a^{\log_{a}y} = xy$ 2) $a^{LHS} = x/y$ and $a^{RHS} = a^{\log_{a}x - \log_{a}y} = a^{\log_{a}x}/a^{\log_{a}y} = x/y$ 3) $a^{LHS} = x^{n}$ and $a^{RHS} = a^{n\log_{a}x} = (a^{\log_{a}x})^{n} = x^{n}$ 4) this is a special case of 2) if we set x=1, as well as of 3) if n=-1

NOTICE

1) The first two laws can be combined in the following way:

$$logA+logB-logC+logD = log \frac{ABD}{C}$$

If we also have coefficients we can work as in the following example

$$2\log A + 3\log B - 4\log C + 5\log D = \log A^2 + \log B^3 - \log C^4 + \log D^5$$
$$= \log \frac{A^2 B^3 D^5}{C^4}$$

Thus

$$2\log A + 3\log B - 4\log C + 5\log D = \log \frac{A^2 B^3 D^5}{C^4}$$

This is the way <u>we convert many logs into one log</u>. It is useful when we solve equations [see Example 2) below]

Look at also the opposite direction

$$\log \frac{A^2 B^3 D^5}{C^4} = 2\log A + 3\log B - 4\log C + 5\log D$$

This is the way <u>we express one log in terms of many logs</u>. It is useful when we need to simplify logarithms [see Example 3) below].

2) When we solve equations involving logs our target is to collect all logs together and convert them into one log.

- If we obtain log_aA(x)=log_aB(x) then we get A(x)=B(x) (we simply eliminate logs)
- If we obtain log_aA(x)=c

then we get $A(x)=a^{c}$ by definition

In both cases the new equation is much simpler, without logs.

EXAMPLE 2

Solve the equations

- (a) $log_2x+log_2(x+2)=log_23$
- (b) log₂x+log₂(x+2)= 3
- (c) $\log_2 x + \log_2 (x-2) \log_2 (x-\frac{3}{4}) = \log_2 3$

<u>Solutions</u>

Hence

$$x(x+2)=3 \Leftrightarrow x^2+2x-3=0$$

The solutions are x=1 and x=-3

The second solution is rejected since x>0 and x+2>0 by the original equation. Therefore x=1.

(b) We obtain $\log_2 x(x+2) = 3$

Hence

 $x(x+2)=2^3 \Leftrightarrow x^2+2x-8=0$

The solutions are x=2 and x=-4

The second solution is rejected since x>0 and x+2>0 by the original equation. Therefore x=2.

(c) We obtain
$$\log_2 \frac{x(x-2)}{(x-\frac{3}{4})} = \log_2 3$$

Hence

$$\frac{x(x-2)}{(x-\frac{3}{4})}=3 \quad \Leftrightarrow \quad x^2-2x=3x-\frac{9}{4} \quad \Leftrightarrow \quad x^2-5x+\frac{9}{4}=0$$

The solutions are x=4.5 or x=0.5

The second solution is rejected. Therefore, x=4.5

• THE NATURAL LOGARITHM INX

The most frequently used logarithm is the logarithm to the base

e=2.7182818...

Instead of log_ex, we denote it by

Inx

Hence,

 $lnx=y \Leftrightarrow e^{y}=x$

• CHANGE OF BASE

Consider the equation

a×=b

If you apply log_a on both sides you obtain

 $x = log_a b$

If you apply any other logarithm, say log, In, log₅, log_c you obtain

 $x = \frac{\log b}{\log a}$, $x = \frac{\ln b}{\ln a}$, $x = \frac{\log_{5} b}{\log_{5} a}$, $x = \frac{\log_{c} b}{\log_{c} a}$

respectively. Thus

$$log_a b = \frac{log b}{log a} = \frac{ln b}{ln a} = \frac{log_c b}{log_c a}$$

That is, we can change $\log_a b$ into $\frac{\log_* b}{\log_* a}$, in any base we like.

The formula

$$log_a b = \frac{log_c b}{log_c a}$$

is known as the "change of base formula".

For example

$$log_2 5 = \frac{log 5}{log 2} = \frac{0.699}{0.301} = 2.322$$
 or $\frac{ln 5}{ln 2} = \frac{1.609}{0.693} = 2.322$

Let us see an example where we need to express one logarithm in terms of many logarithms

EXAMPLE 3

Suppose lnx=a, lny=b, lnz=c, as well as ln2=m, ln5=n. Express the following in terms of a, b, c, m, n.

- $\ln xy, \quad \ln x^2, \qquad \ln \frac{y}{z}, \qquad \ln \frac{x^3 y}{z^2}, \qquad \ln \frac{1}{x}, \qquad \ln \sqrt{x},$
- ln10, ln50, ln2.5, log_2x , log_5e , log_4x^3

<u>Solution</u>

- lnxy = lnx + lny = a+b
- $lnx^2 = 2lnx = 2a$

•
$$\ln \frac{y}{z} = \ln y - \ln z = b - c$$

• $\ln \frac{x^3 y}{z^2} = 3\ln x + \ln y - 2\ln z = 3a + b - 2c$

•
$$\ln \frac{1}{x} = \ln 1 - \ln x = 0 - a = -a$$
 [or $\ln \frac{1}{x} = \ln x^{-1} = -\ln x = -a$]

•
$$\ln \sqrt{x} = \ln x^{1/2} = \frac{1}{2} \ln x = \frac{a}{2}$$

•
$$\ln 10 = \ln(2 \times 5) = \ln 2 + \ln 5 = m + n$$

•
$$\ln 50 = \ln(2 \times 5^2) = \ln 2 + 2\ln 5 = m + 2n$$

•
$$\ln 2.5 = \ln \frac{5}{2} = \ln 5 - \ln 2 = n - m$$

•
$$log_2 x = \frac{lnx}{ln2} = \frac{a}{m}$$

•
$$\log_5 e = \frac{\ln e}{\ln 5} = \frac{1}{n}$$

•
$$\log_4 x^3 = 3\log_4 x = 3\frac{\ln x}{\ln 4} = 3\frac{\ln x}{\ln 2^2} = \frac{3a}{2m}$$

2.10 EXPONENTIAL EQUATIONS

In these equations the unknown x is in the exponent. The simplest exponential equation has the form

If we apply log_a the solution is $x=log_ab$ If we apply log or ln the solution is $x=\frac{logb}{loga}$ or $x=\frac{lnb}{lna}$

EXAMPLE 1

Solve the equation $2(5^{x}) = 9$. Express the result in the form $\frac{\log a}{\log b}$.

<u>Solution</u>

We first divide by 2 and then apply log

$$5^{x} = 4.5 \Leftrightarrow \log 5^{x} = \log 4.5 \Leftrightarrow x \log 5 = \log 4.5 \Leftrightarrow x = \frac{\log 4.5}{\log 5}$$

<u>Notice</u>

If we use ln(), the answer will be $x = \frac{\ln 4.5}{\ln 5}$ If we use $\log_5($), the answer will be $x = \log_5 4.5$

Whenever we see exponentials of base e, it is preferable to use ln().

EXAMPLE 2

Solve the equation 10e^{2x} = 85 <u>Solution</u>

We first divide by 10:

 $10e^{2x} = 85 \Leftrightarrow e^{2x} = 8.5 \Leftrightarrow \ln e^{2x} = \ln 8.5 \Leftrightarrow 2x = \ln 8.5 \Leftrightarrow x = \frac{\ln 8.5}{2}$

EXAMPLE 3

Solve the equation $5^{x} = 2^{x+1}$. Express the result in the form $\frac{\ln a}{\ln b}$.

<u>Solution</u>

Method A: Let us apply In on both sides

$$5^{x} = 2^{x+1} \Leftrightarrow \ln 5^{x} = \ln 2^{x+1}$$
$$\Leftrightarrow x \ln 5 = (x+1) \ln 2$$
$$\Leftrightarrow x \ln 5 = x \ln 2 + \ln 2$$
$$\Leftrightarrow x \ln 5 - x \ln 2 = \ln 2$$
$$\Leftrightarrow x (\ln 5 - \ln 2) = \ln 2$$
$$\Leftrightarrow x = \frac{\ln 2}{\ln 5 - \ln 2} \Leftrightarrow x = \frac{\ln 2}{\ln \frac{5}{2}}$$

<u>Method B</u>: Simplify the equation to the form $a^{x}=b$; then apply In

$$5^{x} = 2^{x+1} \Leftrightarrow 5^{x} = 2^{x}2$$
$$\Leftrightarrow \frac{5^{x}}{2^{x}} = 2$$
$$\Leftrightarrow \left(\frac{5}{2}\right)^{x} = 2$$
$$\Leftrightarrow x \ln\left(\frac{5}{2}\right) = \ln 2$$
$$\Leftrightarrow x = \frac{\ln 2}{\ln \frac{5}{2}}$$

<u>Remarks</u>

- This is the exact answer. If we are looking for an answer to 3sf, the calculator gives x=0.756.
- We can use any logarithm instead of ln(), for example log().
- If an expression in the form $log_a b$ is required, the answer is

$$\left(\frac{5}{2}\right)^{x} = 2 \Leftrightarrow x = \log_{\frac{5}{2}} 2$$