2.9 LOGARITHMS - THE LOGARITHMIC FUNCTION y=logax

 \bullet THE LOGARITHM log2X

This number is called **logarithm of x to the base 2**. It is connected to the exponential 2^x . The definition is given by

 $log_2 x = y \Leftrightarrow 2^y = x$

For example,

 $log_2 8 = 3$, since $2^{3}=8$ $log_2 16 = 4$, since $24 = 16$ $log_2 1024 = 10$, since $2^{10} = 1024$ etc.

For example, for $log_2 8=$?, we think in the following way:

2what exponent gives 8? The answer is 3

Hence $log_28=3$

Working in the same way let us find $log_2 64$ =?

It is $log_2 64=6$

However, for $log_2 10=$?, we should think in the following way: 2what exponent gives 10? OK, this is difficult to answer!!! Our calculator gives log₂10=3.321928... This implies that 23.321928…=10

EXAMPLE 1

Find $log_2 32$, $log_2 2^5$, $log_2 2^{100}$, $log_2 2^{1453}$, $log_2 2$, $log_2 1$

- $log_2 32=5$
- $log_2 2^{5} = 5$ • log22¹⁰⁰=100 Notice, in general **log22^x=x** $log₂2¹⁴⁵³=1453$ • $log_22=1$
- $log_2 1=0$
- THE LOGARITHM logax

In exactly the same way, for any base a>0, $a \ne 1$ we define

$$
log_{a}x = y \Leftrightarrow a^{y} = x
$$

For example, $log_3 9 = 2$ (since $3^{2}=9$)

^U**NOTICE**

Once upon a time $log_{10}x$ has been the most popular logarithm!!!

$$
log_{10}1000 = 3
$$
, $log_{10}10000 = 4$, $log_{10}1000000 = 6$,
 $log_{10}0.001 = -3$, $log_{10}0.000001 = -6$,

In some way, the logarithm to the base 10 indicates the size of the number! Due to its popularity the base 10 for this particular logarithm is usually ignored

We write **logx** instead of **log**₁₀**x** Hence log100=2 log0.01=-2

♦ THE LOGARITHMIC FUNCTION **y=logax**

A new function is defined

y = logax

In fact, this is the inverse function of the exponential function $y=a^x$

If $f(x)=a^x$ then $f^{-1}(x)=log_a x$

Indeed, $a^{x}=y \Leftrightarrow x= \log_{a}y$, hence $f^{-1}(x)=\log_{a}x$

If $a > 1$ (for example if $a = 2$), the graphs of these two functions look like

Observations:

• For $y = a^x$:

: **Domain**: x∈R **Range**: y∈R+ (i.e. y>0)

- For y=logax: **Domain**: x∈R+ (i.e. x>0) **Range**: y∈R
- The x -axis is a horizontal asymptote of $y = a^x$
- The y-axis is a vertical asymptote of $y = \log_a x$
- $y=a^x$ always passes through $(0,1)$
- $y = log_a x$ always passes through $(1,0)$

BASIC PROPERTIES OF LOGARITHMS

For any base a $(a>0, a \ne 1)$

 \bullet log_a $1 = 0$ $log_a a = 1$ • $log_a a^x = x$ $a^{logax} = x$

The first three results can be directly confirmed by the definition of logarithm. For the last one, set $y = log_a x$. The definition implies $a^y=x$. Replace back $y = log_a x$ and the result is immediate!

♦ FOUR ALGEBRAIC LAWS

For simplicity reasons, we use log instead of loga.

 $logx + logy = logxy$ • logx - logy = log y x \bullet nlogx = logxn \bullet $-$ logx = log x 1 1) $log x = log x + log y$ 2) log y $\frac{x}{y}$ = logx – logy 3) $log x^n = nlog x$ 4) log x $\frac{1}{1}$ =- logx or

Proofs (consider all logarithms to be of base a) For all of them we follow the same method! We check if $a^{LHS} = a^{RHS}$ 1) $a^{LHS} = xy$ and $a^{RHS} = a^{\log a x + \log a y} = a^{\log a x} a^{\log a y} = xy$ 2) $a^{LHS} = x/y$ and $a^{RHS} = a^{\log_{a}x - \log_{a}y} = a^{\log_{a}x}/a^{\log_{a}y} = x/y$ 3) $a^LHS = x^n$ and $a^{RHS} = a^{nlog_a x} = (a^{log_a x})^n = x^n$ 4) this is a special case of 2) if we set $x=1$, as well as of 3) if $n=-1$

NOTICE

1) The first two laws can be combined in the following way:

$$
logA + logB - logC + logD = log \frac{ABD}{C}
$$

If we also have coefficients we can work as in the following example

$$
2\log A + 3\log B - 4\log C + 5\log D = \log A^2 + \log B^3 - \log C^4 + \log D^5
$$

$$
= \log \frac{A^2 B^3 D^5}{C^4}
$$

Thus

$$
2logA + 3logB - 4logC + 5logD = log \frac{A^2B^3D^5}{C^4}
$$

This is the way **we convert many logs into one log**. It is useful when we solve equations [see Example 2) below]

Look at also the opposite direction

$$
\log \frac{A^2 B^3 D^5}{C^4} = 2 \log A + 3 \log B - 4 \log C + 5 \log D
$$

This is the way **we express one log in terms of many logs**. It is useful when we need to simplify logarithms [see Example 3) below].

2) When we solve equations involving logs our target is to collect all logs together and convert them into one log.

- If we obtain **logaA(x)=logaB(x)** then we get **A(x)=B(x)** (we simply eliminate logs)
- If we obtain **logaA(x)=c**

then we get **A(x)=a^c** by definition

In both cases the new equation is much simpler, without logs.

EXAMPLE 2

Solve the equations

- (a) $log_2x+log_2(x+2) = log_2 3$
- (b) $log_2x+log_2(x+2)=3$
- **(c)** log₂x+log₂(x-2)-log₂(x-4 $\frac{3}{4}$)=log₂3

Solutions

(a) We obtain
$$
log_2x(x+2) = log_23
$$

Hence

$$
x(x+2)=3 \Leftrightarrow x^2+2x-3=0
$$

The solutions are $x=1$ and $x=-3$

The second solution is rejected since x > \circ and $x+2$ > \circ by the original equation. Therefore $x=1$.

(b) We obtain $log_2x(x+2) = 3$

Hence

 $x(x+2)=2^3$ \Leftrightarrow $x^2+2x-8=0$

The solutions are $x=2$ and $x=-4$

The second solution is rejected since x >O and $x+2>0$ by the original equation. Therefore $x=2$.

(c) We obtain
$$
log_2 \frac{x(x-2)}{(x-\frac{3}{4})} = log_2 3
$$

Hence

$$
\frac{x(x-2)}{(x-\frac{3}{4})}=3 \Leftrightarrow x^2-2x=3x-\frac{9}{4} \Leftrightarrow x^2-5x+\frac{9}{4}=0
$$

The solutions are $x=4.5$ or $x=0.5$

The second solution is rejected. Therefore, $x=4.5$

♦ THE NATURAL LOGARITHM **lnx**

The most frequently used logarithm is the logarithm to the base

e=2.7182818…

Instead of logex, we denote it by

lnx

Hence,

$$
lnx=y \Leftrightarrow e^{y}=x
$$

♦ CHANGE OF BASE

Consider the equation

 $a^x = b$

If you apply log^a on both sides you obtain

 $x = log_a b$

If you apply any other logarithm, say log, ln , log₅, log_c you obtain

x="d
loga logb , $x=\frac{lnb}{lna}$, $x=\frac{log_s b}{log_s a}$ log $_{\mathfrak s}$ b 5 $rac{\epsilon}{s}$, $x=\frac{\log_c 0}{\log_c a}$ lo $g_{\it c}$ b c c

respectively. Thus

$$
log_a b = \frac{logb}{loga} = \frac{lnb}{lna} = \frac{log_c b}{log_c a}
$$

That is, we can change log_ab into $\frac{3}{\log_{*}a}$ log_{*}b * $\frac{1}{2}$, in any base we like.

The formula

$$
\log_a b = \frac{\log_c b}{\log_c a}
$$

is known as the "**change of base formula**".

For example

$$
log_2 5 = \frac{log 5}{log 2} = \frac{0.699}{0.301} = 2.322
$$
 or $\frac{ln 5}{ln 2} = \frac{1.609}{0.693} = 2.322$

Let us see an example where we need to express one logarithm in terms of many logarithms

EXAMPLE 3

Suppose lnx=**a**, lny=**b**, lnz=**c**, as well as ln2=**m**, ln5=**n**. Express the following in terms of **a, b, c, m, n**.

- lnxy, lnx², ln z $\frac{y}{z}$, $ln \frac{x^3y}{z^2}$ 3 z x'y , ln x $\frac{1}{\mu}$, $ln \sqrt{x}$,
- ln10, In50, In2.5, Iog₂x, Iog₅e, Iog₄x³

Solution

- $lnxy = lnx + lny = a+b$
- $lnx^2 = 2lnx = 2a$

•
$$
\ln \frac{y}{z} = \ln y - \ln z = b - c
$$

\n• $\ln \frac{x^3 y}{z^2} = 3\ln x + \ln y - 2\ln z = 3a + b - 2c$

•
$$
\ln \frac{1}{x} = \ln 1 - \ln x = 0 - a = -a
$$
 [or $\ln \frac{1}{x} = \ln x^{-1} = -\ln x = -a$]

•
$$
\ln \sqrt{x} = \ln x^{1/2} = \frac{1}{2} \ln x = \frac{a}{2}
$$

•
$$
ln10 = ln(2 \times 5) = ln2 + ln5 = m+n
$$

•
$$
ln50 = ln(2 \times 5^2) = ln2 + 2ln5 = m+2n
$$

•
$$
\ln 2.5 = \ln \frac{5}{2} = \ln 5 - \ln 2 = \text{n-m}
$$

$$
\bullet \quad \log_2 x = \frac{\ln x}{\ln 2} = \frac{a}{m}
$$

$$
\bullet \quad \log_5 e = \frac{\ln e}{\ln 5} = \frac{1}{n}
$$

•
$$
log_4 x^3 = 3log_4 x = 3 \frac{lnx}{ln4} = 3 \frac{lnx}{ln2^2} = \frac{3a}{2m}
$$

2.10 EXPONENTIAL EQUATIONS

In these equations the unknown x is in the exponent. The simplest exponential equation has the form

 $a^x = b$

If we apply log_a the solution is $x = log_a b$ If we apply log or In the solution is $x=\frac{3}{\log a}$ logb or $x=\frac{\ln b}{\ln a}$

EXAMPLE 1

Solve the equation $2(5^x)$ = 9. Express the result in the form $\frac{254}{\log b}$ loga .

Solution

We first divide by 2 and then apply log

$$
5^x = 4.5 \Leftrightarrow \log 5^x = \log 4.5 \Leftrightarrow x \log 5 = \log 4.5 \Leftrightarrow x = \frac{\log 4.5}{\log 5}
$$

Notice

If we use ln(), the answer will be $x = \frac{\ln 4.5}{\ln 5}$ If we use $log_5($), the answer will be $x = log_5 4.5$

Whenever we see exponentials of base e, it is preferable to use ln().

EXAMPLE 2

Solve the equation $10e^{2x} = 85$ **Solution**

We first divide by 10:

 $10e^{2x}$ = 85 \Leftrightarrow e^{2x} = 8.5 \Leftrightarrow $\ln e^{2x}$ = $\ln 8.5 \Leftrightarrow$ 2x = $\ln 8.5 \Leftrightarrow$

$$
x=\frac{\ln 8.5}{2}
$$

EXAMPLE 3

Solve the equation $5^x = 2^{x+1}$. Express the result in the form $\frac{\ln a}{\ln b}$.

Solution

Method A: Let us apply ln on both sides

$$
5^{x} = 2^{x+1} \Leftrightarrow \ln 5^{x} = \ln 2^{x+1}
$$

\n
$$
\Leftrightarrow x \ln 5 = (x+1) \ln 2
$$

\n
$$
\Leftrightarrow x \ln 5 = x \ln 2 + \ln 2
$$

\n
$$
\Leftrightarrow x \ln 5 - x \ln 2 = \ln 2
$$

\n
$$
\Leftrightarrow x (\ln 5 - \ln 2) = \ln 2
$$

\n
$$
\Leftrightarrow x = \frac{\ln 2}{\ln 5 - \ln 2} \Leftrightarrow x = \frac{\ln 2}{\ln \frac{5}{2}}
$$

Method B : Simplify the equation to the form $a^x = b$; then apply In

$$
5^{x} = 2^{x+1} \Leftrightarrow 5^{x} = 2^{x}2
$$

$$
\Leftrightarrow \frac{5^{x}}{2^{x}} = 2
$$

$$
\Leftrightarrow \left(\frac{5}{2}\right)^{x} = 2
$$

$$
\Leftrightarrow x \ln\left(\frac{5}{2}\right) = \ln 2
$$

$$
\Leftrightarrow x = \frac{\ln 2}{\ln \frac{5}{2}}
$$

Remarks

- This is the exact answer. If we are looking for an answer to 3sf, the calculator gives x=0.756.
- We can use any logarithm instead of ln(), for example log().
- If an expression in the form log_ab is required, the answer is

$$
\left(\frac{5}{2}\right)^x = 2 \Leftrightarrow x = \log_{\frac{5}{2}} 2
$$