BASIC DERIVATIVES - TANGENT AND NORMAL

1. [Maximum mark: 20]

Differentiate the following functions:

Function	Derivative
$y = 7x^3 + 5x^2 + 2x + 3$	
$y = \frac{7}{3}x^3 - \frac{5}{2}x^2 + \frac{1}{3}x + \frac{4}{5}$	
$y = \frac{7x^3}{3} - \frac{5x^2}{2} + \frac{x}{3} + \frac{4}{5}$	
$y = 1 + \frac{2}{x} + \frac{3}{x^2}$	
$y = \frac{1}{3} + \frac{2}{5x} + \frac{3}{7x^2}$	
$y = x^2 \left(1 + \frac{2}{x} + \frac{3}{x^2} \right)$	
$y = \sqrt{x} + \sqrt[3]{x}$	
$y = \sqrt{x^3 + \sqrt[3]{x^2}}$	
$y = \frac{1 + x + x^2}{x^2}$	
$y = \frac{3 + 5x + 7x^2}{2x^2}$	

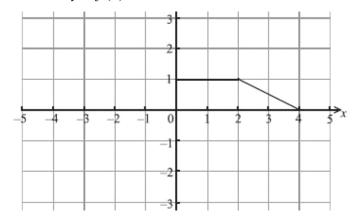
2.	[Max	kimum mark: 6]	
	Let	$f(x) = 5x^2 + 3$	
	(a)	Find $f'(x)$.	[2]
	(b)	Find the gradient of the curve $y = f(x)$ at $x = 1$.	[1]
	(c)	Find the coordinates of the point where the gradient is 20.	[3]
3.		kimum mark: 6]	
	Let	$f(x) = 4\sqrt{x}$	
	(a)	Find $f'(x)$.	[2]
	(b)	Find the gradient of the curve $y = f(x)$ at $x = 1$.	[1]
	(c)	Find the coordinates of the point where the gradient is 1.	[3]

[Ma	ximum mark: 4]
Let	$f(x) = x^3 - 2x^2 - 1.$
(a)	Find $f'(x)$
(b)	Find the gradient of the curve of $f(x)$ at the point $(2, -1)$.

6. [Maximum mark: 7]

Given the following values at x = 1

х	f(x)	g(x)	f'(x)	g'(x)
1	2	3	4	5

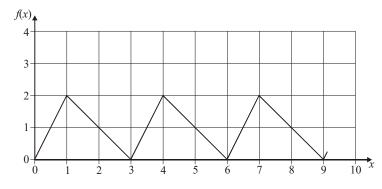

- (a) Find the value of each function below at x = 1.
 - (i) y = f(x) + g(x)
 - (ii) y = 2f(x) + 3g(x)
 - (iii) $y = f(x) + 5x^2$ [3]
- (b) Calculate the derivatives of the following functions at x = 1
 - (i) y = f(x) + g(x)
 - (ii) y = 2f(x) + 3g(x)
 - (iii) $y = f(x) + 5x^2$ [4]

.....

.....

7. [Maximum mark: 4]

The graph of the function y = f(x), $0 \le x \le 4$, is shown below.



- (a) Write down the value of (i) f(1)
- 1) (ii) f(3)
- (b) Write down the value of (i) f'(1)
- (ii) f'(3)

8. [Maximum mark: 6]

Part of the graph of the periodic function f is shown below. The domain of f is $0 \le x \le 15$ and the period is 3.

- (a) Find (i) f(2)
- (ii) f'(6.5)
- (iii) f'(14)
- (b) How many solutions are there to the equation f(x) = 1 over the given domain?

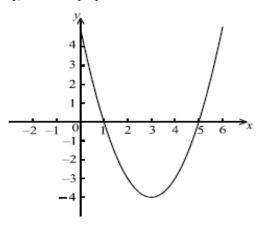
TANGENT LINE - NORMAL LINE

9.	[Max	imum mark: 8]	
	Let j	$f(x) = 2x^2 - 12x + 10.$	
	(a)	Find $f'(x)$.	[1]
	(b)	Find the equations of the tangent line and the normal line at $x=2$.	[4]
	(c)	Find the equations of the tangent line and the normal line at $x = 3$.	[3]

[Max	kimum	mark: 9]				
Let	f(x) =	$=2x^2-12x+10$.				
(a)	Find $f'(x)$.					
(b)	The	line L ₁ with equation $y = 4x - 22$ is tangent to the curve.				
	(i)	Write down the gradient of the line L ₁ .				
	(ii)	Find the coordinates of the point where the line L_1 touches the curve.	[3]			
(c)	The	line L ₂ is tangent to the curve and parallel to the line $y = 8x + 3$.				
	(i)	Write down the gradient of the line L_2 .				
	(ii)	Find the coordinates of the point where the line L_2 touches the curve.				
	(iii)	Find the equation of L_2 in the form $y = mx + c$.	[5]			

11.	[Maximum mark: 6]
	Find the equation of the tangent line and the equation of the normal to the curve with
	equation $y = x^3 + 1$ at the point (1,2).
12.	[Maximum mark: 6]
12.	Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of
12.	
12.	Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of
12.	Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of
12.	Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of
12.	Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of
12.	Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of
12.	Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of f at the point where $x = 1$.
12.	Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of f at the point where $x = 1$.
12.	Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of f at the point where $x = 1$.
12.	Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of f at the point where $x = 1$.
12.	Consider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of f at the point where $x = 1$.

13.	[Maximum mark: 4]
	Find the coordinates of the point on the graph of $y = x^2 - x$ at which the tangent is
	parallel to the line $y = 5x$.
14.	[Maximum mark: 6]
14.	
14.	Let $f(x) = kx^4$. The point $P(1, k)$ lies on the curve of f . At P , the normal to the curve is
14.	Let $f(x) = kx^4$. The point $P(1, k)$ lies on the curve of f . At P , the normal to the curve is parallel to $y = -\frac{1}{8}x$. Find the value of k .
14.	
14.	parallel to $y = -\frac{1}{8}x$. Find the value of k .
14.	
14.	parallel to $y = -\frac{1}{8}x$. Find the value of k .
14.	parallel to $y = -\frac{1}{8}x$. Find the value of k .
14.	parallel to $y = -\frac{1}{8}x$. Find the value of k .
14.	parallel to $y = -\frac{1}{8}x$. Find the value of k .
14.	parallel to $y = -\frac{1}{8}x$. Find the value of k .
14.	parallel to $y = -\frac{1}{8}x$. Find the value of k .
14.	parallel to $y = -\frac{1}{8}x$. Find the value of k .
14.	parallel to $y = -\frac{1}{8}x$. Find the value of k .
14.	parallel to $y = -\frac{1}{8}x$. Find the value of k .
14.	parallel to $y = -\frac{1}{8}x$. Find the value of k .


15.	[Max	imum mark: 6]
	Cons	sider the function $f: x \mapsto 3x^2 - 5x + k$.
	The	equation of the tangent to the graph of f at $x = p$ is $y = 7x - 9$.
	(a)	Write down $f'(x)$.
	(b)	Find the value of (i) p ; (ii) k .
16.	[Max	imum mark: 6]
	Cons	sider the curve with equation $f(x) = px^2 + qx$, where p and q are constants.
		point A(1, 3) lies on the curve. The tangent to the curve at A has gradient 8.
	Find	the value of p and of q .

17.	[Max	kimum mark: 6]
	Con	sider the tangent to the curve $y = x^3 + 4x^2 + x - 6$.
	(a)	Find the equation of this tangent at the point where $x = -1$.
	(b)	Find the coordinates of the point where this tangent meets the curve again.
18.	[Max	kimum mark: 6]
	The	line $y = 16x - 9$ is a tangent to the curve $y = 2x^3 + ax^2 + bx - 9$ at the point (1,7).
	Find	the values of a and b .

B. Paper 2 questions (LONG)

19. [Maximum mark: 11]

The following diagram shows part of the graph of a quadratic function, with equation in the form y = (x - p)(x - q), where $p, q \in \mathbb{Z}$.

- (a) (i) Write down the value of p and of q.
 - (ii) Write down the equation of the axis of symmetry of the curve.
- (b) Find the equation of the function in the form $y = (x h)^2 + k$, where $h, k \in \mathbb{Z}$. [2]

[3]

- (c) Find $\frac{dy}{dx}$ [3]
- (d) Let T be the tangent to the curve at the point (0, 5). Find the equation of T. [3]

20. [Maximum mark: 13]

The function f(x) is defined as $f(x) = -(x-h)^2 + k$. The diagram below shows part of the graph of f(x). The maximum point on the curve is P (3, 2).

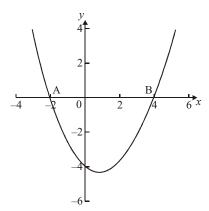
- (a) Write down the value of (i) h (ii) k
- (b) Show that f(x) can be written as $f(x) = -x^2 + 6x 7$. [1]

[2]

[8]

(c) Find f'(x). [2]

The point Q lies on the curve and has coordinates (4, 1). A straight line L, through Q, is perpendicular to the tangent at Q.


(d) (i) Find the equation of L.

(ii)	The line <i>L</i> intersects the curve again at R. Find the <i>x</i> -coordinate of R.

[Max	[Maximum mark: 11]								
The	functi	on f is de	fined by	$f: x \mapsto -0.5$	$x^2 + 2x + 3$	2.5.			
(a)	Write	e down	(i)	f'(x);	(ii)	f'(0).			[2]
(b)	Let I	V be the no	ormal to	the curve at	the point	where the gr	aph intercepts	the	
	<i>y</i> -axis. Show that the equation of <i>N</i> may be written as $y = -0.5x + 2.5$.						[3]		
Let	$g:x\mapsto$	-0.5x + 2.5							
(c)	c) (i) Find the solutions of $f(x) = g(x)$								
	(ii)	Hence fin		oordinates of	the other	point of inte	rsection of the	normal	[6]

22. [Maximum mark: 15]

The equation of a curve may be written in the form y = a(x - p)(x - q). The curve intersects the x-axis at A(-2, 0) and B(4, 0). The curve of y = f(x) is shown in the diagram below.

- (a) (i) Write down the value of p and of q.
 - (ii) Given that the point (6, 8) is on the curve, find the value of a.
 - (iii) Write the equation of the curve in the form $y = ax^2 + bx + c$.
- (b) A tangent is drawn to the curve at a point P. The gradient of this tangent is 7.Find the coordinates of P.[4]
- (c) The line L passes through B(4, 0), and is normal to the curve at B.
 - (i) Find the equation of L.
 - (ii) Find the *x*-coordinate of the point where *L* intersects the curve again. [6]

[5]

.....

[Maxi	mum	mark: 9]	
Let f	$\hat{f}(x) =$	$4x^3 - 3x^2 - 24x + 1$.	
(a)	Find	f'(x)	[2]
The t	anger	nts to the curve of f at the points P and Q are parallel to the x -axis, where	
P is t	o the I	left of Q.	
(b)	Calcu	ulate the coordinates of P and of Q.	[3]
Let N	′₁ and	N_2 be the normals to the curve at P and Q respectively.	
(c)	Write	e down the coordinates of the points where	
	(i)	the tangent at P intersects N_2 ;	
	(ii)	the tangent at Q intersects N_1 .	[4]

24.	[Max	imum mark: 10]	
	Cons	sider the curve with equation $f(x) = 3x^2$. The point $P(a,3a^2)$ lies on the curve.	
	(a)	Find the gradient to the curve at $x = a$.	[2]
	(b)	Show that the equation of the tangent line to the curve at point $P(a,3a^2)$ has	
		equation $y = 6ax - 3a^2$.	[3]
	(c)	Given that the tangent line passes through the point $A(0,-3)$ find the possible	
		values of a .	[3]
	(d)	Hence , find the equations of the tangent lines passing through $A(0,-3)$.	[2]

[Maximum mark: 10]				
Cons	sider the curve with equation $f(x) = 2x^3$.			
(a)	Find the equation of the tangent line to the curve at $x = 1$.	[3]		
(b)	Find in terms of a the equation of the tangent line to the curve at $x = a$.	[3]		
(c)	Hence , find the equation of the tangent line passing through the point $A(0,4)$.	[4]		