Numerical solutions to coupled differential equations.

Most applications of coupled differential equations will involve non-linear equations and so usually cannot be solved directly.

Fortunately there are many numerical methods for finding approximate solutions, one of which is the Euler method covered in this course.

For

$$\frac{dx}{dt} = f_1(x, y, t)$$

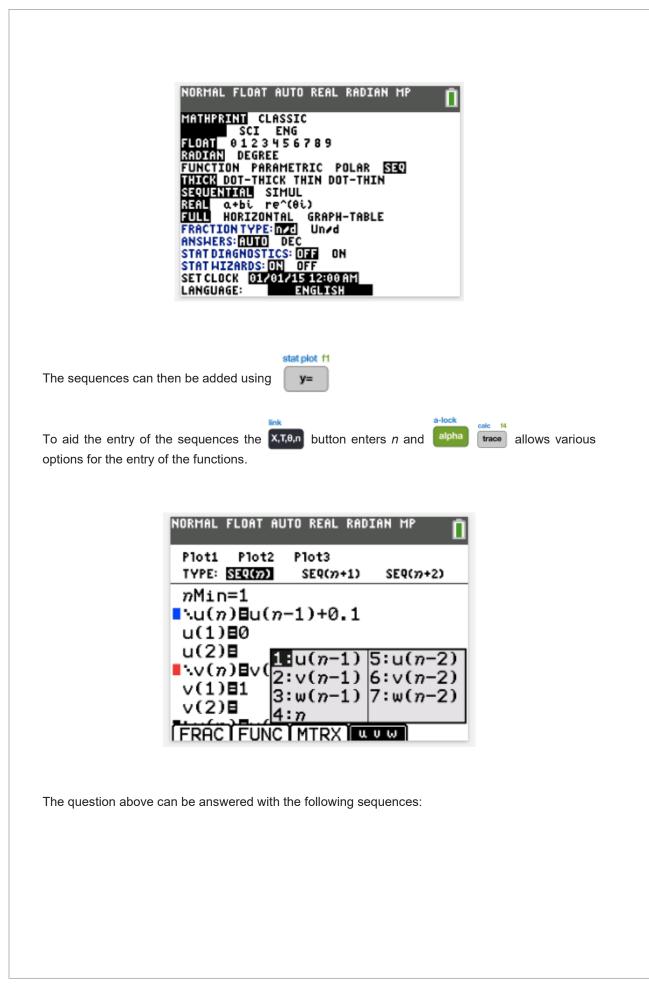
$$\frac{dy}{dt} = f_2(x, y, t)$$

The Euler formula is

$$x_{n+1} = x_n + h \times f_1(x_n, y_n, t_n)$$
$$y_{n+1} = y_n + h \times f_2(x_n, y_n, t_n)$$
$$t_{n+1} = t_n + h$$

Example question

Use the Euler method with a step length of 0.1 to find the value of x and y when t = 1, given that x = 1, y = 1 when t = 0.


$$\frac{dx}{dt} = 3x - xy$$
$$\frac{dy}{dt} = xy - 2y$$

Solution

Values when t = 1 are x = 6.5408, y = 1.92566

TI-84

Put the calculator into sequence SEQ mode.

NORMAL	FLOAT AU	ITO REAL RAD	IAN MP
Plot1	Plot2	Plot3	
TYPE:	SEG(2)	SEQ(77+1)	SEQ(77+2)
лМіг	ו=0		
∎∿u(7))∎u(m	-1)+0.1	
u(0)	0∎0		
u(1)			
■\v(7	ת)ע∎(ה	-1)+0.1(3∨(n-1)→
v(0)) 81		
v(1)	_		
∎∿w(7	ת)∎w(ת	-1)+0.1(w(n−1)∨0

The first sequence entered gives the values of *t*, the second gives \dot{x} and the third gives \dot{y} .

graph

The results can be seen in the table, 2nd

n	ແ(ກ)	0(22)	ພ(ກ)	
0	0	1	1	
1	0.1	1.2	0.9	
2	0.2	1.452	0.828	
3	0.3	1.7674	0.7826	
4	0.4	2.1593	0.7644	
5	0.5	2.642	0.7766	
6	0.6	3.2294	0.8265	
7	0.7	3.9313	0.9281	
8	0.8	4.7459	1.1073	
9	0.9	5.6441	1.4113	
10	1	6.5408	1.9257	

HP-Prime

Sequence is selected from the Apps menu.

		n Library	Ζπ
Solve	Linear Solver	Quadratic Explorer	Trig Explorer
Triangle Solver	Finance	Linear Explorer	Parametric
Polar	Sequence		
	function entry pag		
takes you to the	function entry pag	mbolic Viev	uences are ente
takes you to the takes you to take takes you to the takes you to take take	function entry pag		uences are ente
takes you to the	function entry pag Sequence Sy N-1)+0.1	mbolic Viev	uences are ente v Ø9:52 v 4π
takes you to the ✓ U1(0)= 0 U1(N)= U1(Option1: ✓ U2(0)= 1	function entry pag Sequence Sy N-1)+0.1 U(N)	mbolic Viev U1(1)= • Start N: U2(1)=	uences are ente
takes you to the ✓ U1(0)= 0 U1(N)= U1(Option1: ✓ U2(0)= 1	function entry pag Sequence Sy N-1)+0.1	mbolic Viev U1(1)= • Start N: U2(1)=	uences are ente
takes you to the √ U1(0)= 0 U1(N)= U1(○ Option1: √ U2(0)= 1	function entry pag Sequence Sy N-1)+0.1 U(N) N-1)+0.1*(3*1	mbolic Viev U1(1)= • Start N: U2(1)=	uences are ente v 09:52 ∡π 0 2(N−1)*U3(N
takes you to the ✓ U1(0)= 0 U1(N)= U1(Option1: ✓ U2(0)= 1 U2(N)= U2(function entry pag Sequence Sy N-1)+0.1 U(N) N-1)+0.1*(3*1	mbolic Viev U1(1)= Start N: U2(1)= U2(N-1)-U	uences are ente v 09:52 ∡π 0 2(N−1)*U3(N

Sequence Numeric View 09:54				
N	U1	U2	U3	
0	0	1	1	
1	0.1	1.2	0.9	
2	0.2	1.452	0.828	
3	0.3	1.7673744	0.7826256	
4	0.4	2.15926747	0.76441973	
5	0.5	2.64198905	0.77659444	
6	0.6	3.22941037	0.82645096	
7	0.7	3.93133855	0.92805570	
8	0.8	4.74589000	1.10729467	
9	0.9	5.64414713	1.41134561	
0				
Zoom	More 🛛 Go To	D	efn [

Casio fx9750GII

Choose **RECUR** from the apps menu.

	t M
Recursion an+1: bn+1: [— Cn+1: [—	
SHAS DELL TWPE MANY SETT (TAB	– L

To enter the sequences use in **F4** which gives the options for the terms as below.

Recursion	
an+1:	
bn+1:	[—]
Cn+1:	[—]
	_

Enter the functions.

Select **SET** to enter the initial conditions.

Table S	etting	n+1
Start:	0	
	10	
ao :	0	
bo :	1	
Co :	±	
_anStr:	0	
lao ai		

Exit again to the screen below.

Recursion an+18an+0.1 [bn+18bn+0.1(3bn-b[Cn+1=Cn+0.1(3bnCn=1	—] —]
SHAS DELT TYPE (1307 SET) (TABL

And then choose **TABL** to display the table of results.

<u>n+i</u>	dn+i	bn+i	Cn+i
	0	1	רי
	0. I	1.2	0.9
5 I		1.452	
3	0.3	1.7673	0. 1826
FORM DEL	PHAS (D	JEB <mark>G·C</mark>	0 0 N G·PL T

• • • • • • • • •

Contexts

.

i6

Common contexts for these questions include predator-prey models, population changes and the spread of diseases (for example using the SIR model).

..

~

Second-order differential equations

Within the course these are viewed as an extension of the methods of AHL5.16 and AHL5.17. Direct approaches using, for example, an "auxiliary equation" will not be expected in exams, even when this approach is possible.

This method of writing second and higher-order differential equations as a system of linear equations is a frequently-used technique.

The questions in an exam will often be set in a context but knowledge of the context from outside the syllabus will not be required. Any interpretation required will be on the general properties of differential equations or will use information given in the question.

Example question

A mass, M, is attached to the end of a spring. Let x be the displacement of M (measured in cm) from an equilibrium position and at t=0, let M be at rest with x=2.

The subsequent motion of M can be described by the second order differential equation:

$$\ddot{x} + \dot{x} + 4.25x = 0$$
.

- a. Write this as a system of two coupled differential equations.
- b. (i) Find the eigenvalues of this system.
 - (ii) Hence sketch the trajectory of M on a phase portrait.
 - (iii) Indicate on your diagram the first point for t > 0 at which the velocity is equal to zero.
 - (iv) Describe the long-term state of M.

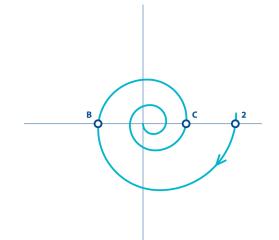
Use Euler's method with a step length of 0.1 to find:

- c. (i) The time, to the nearest tenth of a second, at which M again has a maximum (positive) displacement.
 - (ii) The displacement at this point.
 - (iii) Indicate this point on the diagram drawn in part (b).

I

Solution

 $\dot{x} = y$


$$a. \qquad \dot{y} = -y - 4.25x$$

T

 \dot{x} = y is defined in the syllabus

 $\lambda^2 + \lambda + 4.25 = 0 \Rightarrow \lambda = -0.5 \pm 2i.$

(ii) The trajectory will spiral towards (0,0). At the point $(2,0)\dot{y} = -8.5$ so the spiral is clockwise.

- (iii) Indicated as B on the diagram.
- (iv) M will come to rest in the equilibrium position.

c. (i) t = 3.1.

- (ii) x = 0.8195...
- (iii) Indicated as C on the diagram.